Information processing in complex networks: Graph entropy and information functionals

نویسنده

  • Matthias Dehmer
چکیده

This paper introduces a general framework for defining the entropy of a graph. Our definition is based on a local information graph and on information functionals derived from the topological structure of a given graph. More precisely, an information functional quantifies structural information of a graph based on a derived probability distribution. Such a probability distribution leads directly to an entropy of a graph. Then, the structural information content of a graph will be is interpreted and defined as the derived graph entropy. Another major contribution of this paper is the investigation of relationships between graph entropies. In addition to this, we provide numerical results demonstrating not only the feasibility of our method, which has polynomial time complexity, but also its usefulness with regard to practical applications aiming to an understanding of information processing in complex networks. 2007 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Properties for Degree-Based Graph Entropies

The graph entropies inspired by Shannon’s entropy concept become the information-theoretic quantities for measuring the structural information of graphs and complex networks. In this paper, we continue studying some new properties of the graph entropies based on information functionals involving vertex degrees. We prove the monotonicity of the graph entropies with respect to the power exponent....

متن کامل

Recent Developments in Quantitative Graph Theory: Information Inequalities for Networks

In this article, we tackle a challenging problem in quantitative graph theory. We establish relations between graph entropy measures representing the structural information content of networks. In particular, we prove formal relations between quantitative network measures based on Shannon's entropy to study the relatedness of those measures. In order to establish such information inequalities f...

متن کامل

LPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring

Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...

متن کامل

Information Inequalities for Graphs

In this paper, we state information inequalities for nanostructures representing graphs by using some novel information functionals. We use a recently proposed approach to determine the structural information content of arbitrary undirected and connected graphs. In contrast to the information indices often used in chemical information theory, the entropy measure does not depend on the problem t...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 201  شماره 

صفحات  -

تاریخ انتشار 2008